Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
China Journal of Chinese Materia Medica ; (24): 1770-1778, 2023.
Article in Chinese | WPRIM | ID: wpr-981394

ABSTRACT

To investigate the effect of Huazhi Rougan Granules(HZRG) on autophagy in a steatotic hepatocyte model of free fatty acid(FFA)-induced nonalcoholic fatty liver disease(NAFLD) and explore the possible mechanism. FFA solution prepared by mixing palmitic acid(PA) and oleic acid(OA) at the ratio of 1∶2 was used to induce hepatic steatosis in L02 cells after 24 h treatment, and an in vitro NAFLD cell model was established. After termination of incubation, cell counting kit-8(CCK-8) assay was performed to detect the cell viability; Oil red O staining was employed to detect the intracellular lipid accumulation; enzyme-linked immunosorbnent assay(ELISA) was performed to measure the level of triglyceride(TG); to monitor autophagy in L02 cells, transmission electron microscopy(TEM) was used to observe the autophagosomes; LysoBrite Red was used to detect the pH change in lysosome; transfection with mRFP-GFP-LC3 adenovirus was conducted to observe the autophagic flux; Western blot was performed to determine the expression of autophagy marker LC3B-Ⅰ/LC3B-Ⅱ, autophagy substrate p62 and silent information regulator 1(SIRT1)/adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway. NAFLD cell model was successfully induced by FFA at 0.2 mmol·L~(-1) PA and 0.4 mmol·L~(-1) OA. HZRG reduced the TG level(P<0.05, P<0.01) and the lipid accumulation of FFA-induced L02 cells, while elevated the number of autophagosomes and autophagolysosomes to generate autophagic flux. It also affected the functions of lysosomes by regulating their pH. Additionally, HZRG up-regulated the expression of LC3B-Ⅱ/LC3B-Ⅰ, SIRT1, p-AMPK and phospho-protein kinase A(p-PKA)(P<0.05, P<0.01), while down-regulated the expression of p62(P<0.01). Furthermore, 3-methyladenine(3-MA) or chloroquine(CQ) treatment obviously inhibited the above effects of HZRG. HZRG prevented FFA-induced steatosis in L02 cells, and its mechanism might be related to promoting autophagy and regulating SIRT1/AMPK signaling pathway.


Subject(s)
Humans , Non-alcoholic Fatty Liver Disease/metabolism , Sirtuin 1/metabolism , AMP-Activated Protein Kinases/metabolism , Fatty Acids, Nonesterified/metabolism , Autophagy , Liver
2.
China Journal of Chinese Materia Medica ; (24): 1751-1759, 2023.
Article in Chinese | WPRIM | ID: wpr-981392

ABSTRACT

Hepatic lipid deposition is one of the basic manifestations of obesity, and nowadays pharmacological treatment is the most important tool. Punicalagin(PU), a polyphenol derived from pomegranate peel, is a potential anti-obesity substance. In this study, 60 C57BL/6J mice were randomly divided into a normal group and a model group. After establishing a model of simple obesity with a high-fat diet for 12 weeks, the successfully established rat models of obesity were then regrouped into a model group, an orlistat group, a PU low-dose group, a PU medium-dose group, and a PU high-dose group. The normal group was kept on routine diet and other groups continued to feed the high-fat diet. The body weight and food intake were measured and recorded weekly. After 8 weeks, the levels of the four lipids in the serum of each group of mice were determined by an automatic biochemical instrument. Oral glucose tole-rance and intraperitoneal insulin sensitivity were tested. Hemoxylin-eosin(HE) staining was applied to observe the hepatic and adipose tissues. The mRNA expression levels of peroxisome proliferators-activated receptor γ(PPARγ) and C/EBPα were determined by real-time quantitative polymerase chain reaction(Q-PCR), and the mRNA and protein expression levels of adenosine 5'-monophosphate-activated protein kinase(AMPK), anterior cingulate cortex(ACC), and carnitine palmitoyltransferase 1A(CPT1A) were determined by Western blot. Finally, the body mass, Lee's index, serum total glyceride(TG), serum total cholesterol(TC), and low-density lipoprotein cholesterol(LDL-C) levels were significantly higher and high-density lipoprotein cholesterol(HDL-C) levels were significantly lower in the model group as compared with the normal group. The fat deposition in the liver was significantly increased. The mRNA expression levels of hepatic PPARγ and C/EBPα and the protein expression level of ACC were increased, while the mRNA and protein expression levels of CPT-1α(CPT1A) and AMPK were decreased. After PU treatment, the above indexes of obese mice were reversed. In conclusion, PU can decrease the body weight of obese mice and control their food intake. It also plays a role in the regulation of lipid metabolism and glycometabolism metabolism, which can significantly improve hepatic fat deposition. Mechanistically, PU may regulate liver lipid deposition in obese mice by down-regulating lipid synthesis and up-regulating lipolysis through activation of the AMPK/ACC pathway.


Subject(s)
Rats , Mice , Animals , Mice, Obese , AMP-Activated Protein Kinases/metabolism , PPAR gamma/metabolism , Mice, Inbred C57BL , Liver/metabolism , Obesity/genetics , Body Weight , Lipid Metabolism , Diet, High-Fat/adverse effects , Lipids , Cholesterol
3.
China Journal of Chinese Materia Medica ; (24): 1739-1750, 2023.
Article in Chinese | WPRIM | ID: wpr-981391

ABSTRACT

This study investigated the effect of Lianmei Qiwu Decoction(LMQWD) on the improvement of cardiac autonomic nerve remodeling in the diabetic rat model induced by the high-fat diet and explored the underlying mechanism of LMQWD through the AMP-activated protein kinase(AMPK)/tropomyosin receptor kinase A(TrkA)/transient receptor potential melastatin 7(TRPM7) signaling pathway. The diabetic rats were randomly divided into a model group, an LMQWD group, an AMPK agonist group, an unloaded TRPM7 adenovirus group(TRPM7-N), an overexpressed TRPM7 adenovirus group(TRPM7), an LMQWD + unloaded TRPM7 adenovirus group(LMQWD+TRPM7-N), an LMQWD + overexpressed TRPM7 adenovirus group(LMQWD+TRPM7), and a TRPM7 channel inhibitor group(TRPM7 inhibitor). After four weeks of treatment, programmed electrical stimulation(PES) was employed to detect the arrhythmia susceptibility of rats. The myocardial cell structure and myocardial tissue fibrosis of myocardial and ganglion samples in diabetic rats were observed by hematoxylin-eosin(HE) staining and Masson staining. The immunohistochemistry, immunofluorescence, real-time quantitative polymerase chain reaction(RT-PCR), and Western blot were adopted to detect the distribution and expression of TRPM7, tyrosine hydroxylase(TH), choline acetyltransferase(ChAT), growth associated protein-43(GAP-43), nerve growth factor(NGF), p-AMPK/AMPK, and other genes and related neural markers. The results showed that LMQWD could significantly reduce the arrhythmia susceptibility and the degree of fibrosis in myocardial tissues, decrease the levels of TH, ChAT, and GAP-43 in the myocardium and ganglion, increase NGF, inhibit the expression of TRPM7, and up-regulate p-AMPK/AMPK and p-TrkA/TrkA levels. This study indicated that LMQWD could attenuate cardiac autonomic nerve remodeling in the diabetic state, and its mechanism was associated with the activation of AMPK, further phosphorylation of TrkA, and inhibition of TRPM7 expression.


Subject(s)
Rats , Animals , AMP-Activated Protein Kinases/metabolism , Nerve Growth Factor/metabolism , Diabetes Mellitus, Experimental/drug therapy , TRPM Cation Channels/metabolism , GAP-43 Protein/metabolism , Signal Transduction , Diabetic Neuropathies/genetics , Fibrosis
4.
China Journal of Chinese Materia Medica ; (24): 2146-2159, 2023.
Article in Chinese | WPRIM | ID: wpr-981346

ABSTRACT

On the basis of establishing the prescription of Xinjianqu and clarifying the increase of the lipid-lowering active ingredients of Xinjianqu by fermentation, this paper further compared the differences in the lipid-lowering effects of Xinjianqu before and after fermentation, and studied the mechanism of Xinjianqu in the treatment of hyperlipidemia. Seventy SD rats were randomly divided into seven groups, including normal group, model group, positive drug simvastatin group(0.02 g·kg~(-1)), and low-dose and high-dose Xinjianqu groups before and after fermentation(1.6 g·kg~(-1) and 8 g·kg~(-1)), with ten rats in each group. Rats in each group were given high-fat diet continuously for six weeks to establish the model of hyperlipidemia(HLP). After successful modeling, the rats were given high-fat diet and gavaged by the corresponding drugs for six weeks, once a day, to compare the effects of Xinjianqu on the body mass, liver coefficient, and small intestine propulsion rate of rats with HLP before and after fermentation. The effects of Xinjianqu before and after fermentation on total cholesterol(TC), triacylglyceride(TG), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), alanine aminotransferase(ALT), aspartate aminotransferase(AST), blood urea nitrogen(BUN), creatinine(Cr), motilin(MTL), gastrin(GAS), and the Na~+-K~+-ATPase levels were determined by enzyme-linked immunosorbent assay(ELISA). The effects of Xinjianqu on liver morphology of rats with HLP were investigated by hematoxylin-eosin(HE) staining and oil red O fat staining. The effects of Xinjianqu on the protein expression of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphorylated AMPK(p-AMPK), liver kinase B1(LKB1), and 3-hydroxy-3-methylglutarate monoacyl coenzyme A reductase(HMGCR) in liver tissues were investigated by immunohistochemistry. The effects of Xinjianqu on the regulation of intestinal flora structure of rats with HLP were studied based on 16S rDNA high-throughput sequencing technology. The results showed that compared with those in the normal group, rats in the model group had significantly higher body mass and liver coefficient(P<0.01), significantly lower small intestine propulsion rate(P<0.01), significantly higher serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2(P<0.01), and significantly lower serum levels of HDL-C, MTL, GAS, Na~+-K~+-ATP levels(P<0.01). The protein expression of AMPK, p-AMPK, and LKB1 in the livers of rats in the model group was significantly decreased(P<0.01), and that of HMGCR was significantly increased(P<0.01). In addition, the observed_otus, Shannon, and Chao1 indices were significantly decreased(P<0.05 or P<0.01) in rat fecal flora in the model group. Besides, in the model group, the relative abundance of Firmicutes was reduced, while that of Verrucomicrobia and Proteobacteria was increased, and the relative abundance of beneficial genera such as Ligilactobacillus and Lachnospiraceae_NK4A136_group was reduced. Compared with the model group, all Xinjianqu groups regulated the body mass, liver coefficient, and small intestine index of rats with HLP(P<0.05 or P<0.01), reduced the serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2, increased the serum levels of HDL-C, MTL, GAS, and Na~+-K~+-ATP, improved the liver morphology, and increased the protein expression gray value of AMPK, p-AMPK, and LKB1 in the liver of rats with HLP and decreased that of LKB1. Xinjianqu groups could regulate the intestinal flora structure of rats with HLP, increased observed_otus, Shannon, Chao1 indices, and increased the relative abundance of Firmicutes, Ligilactobacillus(genus), Lachnospiraceae_NK4A136_group(genus). Besides, the high-dose Xinjianqu-fermented group had significant effects on body mass, liver coefficient, small intestine propulsion rate, and serum index levels of rats with HLP(P<0.01), and the effects were better than those of Xinjianqu groups before fermentation. The above results show that Xinjianqu can improve the blood lipid level, liver and kidney function, and gastrointestinal motility of rats with HLP, and the improvement effect of Xinjianqu on hyperlipidemia is significantly enhanced by fermentation. The mechanism may be related to AMPK, p-AMPK, LKB1, and HMGCR protein in the LKB1-AMPK pathway and the regulation of intestinal flora structure.


Subject(s)
Rats , Animals , AMP-Activated Protein Kinases/metabolism , Rats, Sprague-Dawley , Cholesterol, LDL , Fermentation , Aquaporin 2/metabolism , Lipid Metabolism , Liver , Lipids , Hyperlipidemias/genetics , Adenosine Triphosphate/pharmacology , Diet, High-Fat/adverse effects
5.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 371-382, 2023.
Article in English | WPRIM | ID: wpr-982708

ABSTRACT

This study aimed to investigate the effect and mechanisms of Ephedra Herb (EH) extract on adriamycin-induced nephrotic syndrome (NS), providing an experimental basis for the clinical treatment of NS. Hematoxylin and eosin staining, creatinine, urea nitrogen, and kidn injury molecule-1 were used to evaluate the activities of EH extract on renal function. The levels of inflammatory factors and oxidative stress were detected by kits. The levels of reactive oxygen species, immune cells, and apoptosis were measured by flow cytometry. A network pharmacological approach was used to predict the potential targets and mechanisms of EH extract in the treatment of NS. The protein levels of apoptosis-related proteins and CAMKK2, p-CAMKK2, AMPK, p-AMPK, mTOR and p-mTOR in the kidneys were detected by Western blot. The effective material basis of EH extract was screened by MTT assay. The AMPK pathway inhibitor (compound C, CC) was added to investigate the effect of the potent material basis on adriamycin-induced cell injury. EH extract significantly improved renal injury and relieve inflammation, oxidative stress, and apoptosis in rats. Network pharmacology and Western blot results showed that the effect of EH extract on NS may be associated with the CAMKK2/AMPK/mTOR signaling pathway. Moreover, methylephedrine significantly ameliorated adriamycin-induced NRK-52e cell injury. Methylephedrine also significantly improved the phosphorylation of AMPK and mTOR, which were blocked by CC. In sum, EH extract may ameliorate renal injury via the CAMKK2/AMPK/mTOR signaling pathway. Moreover, methylephedrine may be one of the material bases of EH extract.


Subject(s)
Rats , Animals , Doxorubicin/adverse effects , Nephrotic Syndrome , AMP-Activated Protein Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis
6.
Frontiers of Medicine ; (4): 388-431, 2023.
Article in English | WPRIM | ID: wpr-982588

ABSTRACT

Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.


Subject(s)
Humans , Metformin/pharmacokinetics , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology , AMP-Activated Protein Kinases/metabolism , Aging
7.
China Journal of Chinese Materia Medica ; (24): 193-201, 2023.
Article in Chinese | WPRIM | ID: wpr-970514

ABSTRACT

Alcoholic liver disease(ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Methyl ferulic acid(MFA) has been proven to significantly inhibit alcohol-induced lipid production in L02 cells through the AMP-activated protein kinase(AMPK) pathway, but its in-depth mechanism remains unclear. This study aimed to further clarify the mechanism of MFA in improving lipid accumulation in L02 cells through the microRNA-378b(miR-378b)-mediated calcium/calmodulin-dependent protein kinase kinase 2(CaMKK2)-AMPK signaling pathway based on existing researches. L02 cells were induced by 100 mmol·L~(-1) ethanol for 48 h to establish the model of ALD in vitro, and 100, 50, and 25 μmol·L~(-1) concentration of MFA was treated. MiR-378b plasmids(containing the overexpression plasmid-miR-378b mimics, silence plasmid-miR-378b inhibitor, and their respective negative control-miR-378b NCs) were transfected into L02 cells by electroporation to up-regulate or down-regulate the levels of miR-378b in L02 cells. The levels of total cholesterol(TC) and triglyceride(TG) in cells were detected by commercial diagnostic kits and automatic biochemical analyzers. The expression levels of miR-378b in L02 cells were detected by real-time quantitative polymerase chain reaction(qRT-PCR). CaMKK2 mRNA levels were detected by PCR, and protein expressions of related factors involved in lipid synthesis, decomposition, and transport in lipid metabolism were detected by Western blot. The results displayed that ethanol significantly increased TG and TC levels in L02 cells, while MFA decreased TG and TC levels. Ethanol up-regulated the miR-378b level, while MFA effectively inhibited the miR-378b level. The overexpression of miR-378b led to lipid accumulation in ethanol-induced L02 cells, while the silence of miR-378b improved the lipid deposition induced by ethanol. MFA activated the CaMKK2-AMPK signaling pathway by lowering miR-378b, thus improving lipid synthesis, decomposition, and transport, which improved lipid deposition in L02 cells. This study shows that MFA improves lipid deposition in L02 cells by regulating the CaMKK2-AMPK pathway through miR-378b.


Subject(s)
Humans , Ethanol/toxicity , AMP-Activated Protein Kinases/metabolism , Fatty Liver , Triglycerides , MicroRNAs/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics
8.
Journal of Southern Medical University ; (12): 199-205, 2023.
Article in Chinese | WPRIM | ID: wpr-971515

ABSTRACT

OBJECTIVE@#To study the protective effect of forsythiaside B (FB) against cerebral oxidative stress injury induced by cerebral ischemia/reperfusion (I/R) in mice and explore the underlying mechanism.@*METHODS@#Ninety C57BL/6 mice were randomized into sham-operated group, middle cerebral artery occlusion (MCAO) model group, and low-, medium and highdose (10, 20, and 40 mg/kg, respectively) FB groups. The expression levels of MDA, ROS, PCO, 8-OHdG, SOD, GSTα4, CAT and GPx in the brain tissue of the mice were detected using commercial kits, and those of AMPK, P-AMPK, DAF-16, FOXO3 and P-FOXO3 were detected with Western blotting. Compound C (CC), an AMPK inhibitor, was used to verify the role of the AMPK pathway in mediating the therapeutic effect of FB. In another 36 C57BL/6 mice randomized into 4 sham-operated group, MCAO model group, FB (40 mg/kg) treatment group, FB+CC (10 mg/kg) treatment group, TTC staining was used to examine the volume of cerebral infarcts, and the levels of ROS and SOD in the brain were detected; the changes in the protein expressions of AMPK, P-AMPK, DAF-16, FOXO3 and P-FOXO3 in the brain tissue were detected using Western blotting.@*RESULTS@#In mice with cerebral IR injury, treatment with FB significantly reduced the levels of ROS, MDA, PCO and 8-OHdG, increased the activities of antioxidant enzymes SOD, GSTα4, CAT and GPx, and enhanced phosphorylation of AMPK and FOXO3 and DAF-16 protein expression in the brain tissue (P < 0.01). Compared with FB treatment alone, the combined treatment with FB and CC significantly reduced phosphorylation of AMPK and FOXO3, lowered expression of DAF-16 and SOD activity, and increased cerebral infarction volume and ROS level in the brain tissue of the mice (P < 0.01).@*CONCLUSION@#FB inhibits oxidative stress injury caused by cerebral I/R in mice possibly by enhancing AMPK phosphorylation, promoting the downstream DAF-16 protein expression and FOXO3 phosphorylation, increasing the expression of antioxidant enzymes, and reducing ROS level in the brain tissue.


Subject(s)
Mice , Animals , AMP-Activated Protein Kinases/metabolism , Antioxidants/metabolism , Reactive Oxygen Species , Mice, Inbred C57BL , Brain Ischemia , Oxidative Stress , Infarction, Middle Cerebral Artery , Reperfusion Injury , Reperfusion , Superoxide Dismutase/metabolism
9.
Journal of Southern Medical University ; (12): 191-198, 2023.
Article in Chinese | WPRIM | ID: wpr-971514

ABSTRACT

OBJECTIVE@#To investigate the effects of different manners of heat exposure on thoracic aorta injury in spontaneously hypertensive rats (SHRs) and explore the underlying mechanism.@*METHODS@#Normal 6 to 7-week-old male SHRs were randomized into control group (cage at room temperature), intermittent heat exposure group (SHR-8 group, exposed to 32 ℃ for 8 h daily for 7 days) and SHR-24 group (with continuous exposure to 32 ℃ for 7 days). After the treatments, the pathologies of the thoracic aorta of the rats were observed with HE staining, and the expressions of Beclin1, LC3B and p62 were detected with Western blotting and immunofluorescence assay; TUNEL staining was used to observe cell apoptosis in the thoracic aorta, and the expressions of caspase-3, Bax, and Bcl-2 were detected using Western blotting. The effects of intraperitoneal injections of 3-MA (an autophagy agonist), rapamycin (an autophagy inhibitor) or compound C 30 min before intermittent heat exposure on the expressions of proteins associated with autophagy, apoptosis and the AMPK/mTOR/ULK1 pathway in the aorta were examined with immunohistochemistry.@*RESULTS@#In SHR-8 group, the rats showed incomplete aortic intima with disordered cell distribution and significantly increased expressions of Beclin1, LC3II/LC3I and Bax, lowered expressions of p62 and Bcl-2, and increased apoptotic cells in the thoracic aorta (P < 0.05). Pretreatment with 3-MA obviously inhibited the expressions of autophagy- and apoptosis-related proteins, whereas rapamycin promoted their expressions. Compared with the control group, the rats in SHR-8 group had significantly down-regulated p-mTOR and up-regulated p-AMPK and p-ULK1 expression of in the aorta; Treatment with compound C obviously lowered the expressions of p-AMPK and p-ULK1 and those of LC3B and Beclin1 as well.@*CONCLUSION@#In SHRs, intermittent heat exposure causes significant pathologies and promotes autophagy and apoptosis in the thoracic aorta possibly by activating the AMPK/mTOR/ULK1 pathway.


Subject(s)
Rats , Male , Animals , Rats, Inbred SHR , AMP-Activated Protein Kinases/metabolism , bcl-2-Associated X Protein/metabolism , Aorta, Thoracic , Beclin-1 , Hot Temperature , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Aortic Diseases , Autophagy , Autophagy-Related Protein-1 Homolog/metabolism
10.
Journal of Integrative Medicine ; (12): 442-452, 2022.
Article in English | WPRIM | ID: wpr-939906

ABSTRACT

OBJECTIVE@#Depression and metabolic disorders have overlapping psychosocial and pathophysiological causes. Current research is focused on the possible role of adiponectin in regulating common biological mechanisms. Xiaoyao San (XYS), a classic Chinese medicine compound, has been widely used in the treatment of depression and can alleviate metabolic disorders such as lipid or glucose metabolism disorders. However, the ability of XYS to ameliorate depression-like behavior as well as metabolic dysfunction in mice and the underlying mechanisms are unclear.@*METHODS@#An in vivo animal model of depression was established by chronic social defeat stress (CSDS). XYS and fluoxetine were administered by gavage to the drug intervention group. Depression-like behaviors were analyzed by the social interaction test, open field test, forced swim test, and elevated plus maze test. Glucose levels were measured using the oral glucose tolerance test. The involvement of certain molecules was validated by immunofluorescence, histopathology, and Western blotting. In vitro, hypothalamic primary neurons were exposed to high glucose to induce neuronal damage, and the neuroprotective effect of XYS was evaluated by cell counting kit-8 assay. Immunofluorescence and Western blotting were used to evaluate the influences of XYS on adiponectin receptor 1 (AdipoR1), adenosine 5'-monophosphate-activated protein kinase (AMPK), acetyl-coenzyme A carboxylase (ACC) and other related proteins.@*RESULTS@#XYS ameliorated CSDS-induced depression-like behaviors and glucose tolerance impairment in mice and increased the level of serum adiponectin. XYS also restored Nissl bodies in hypothalamic neurons in mice that exhibited depression-like behaviors and decreased the degree of neuronal morphological damage. In vivo and in vitro studies indicated that XYS increased the expression of AdipoR1 in hypothalamic neurons.@*CONCLUSION@#Adiponectin may be a key regulator linking depression and metabolic disorders; regulation of the hypothalamic AdipoR1/AMPK/ACC pathway plays an important role in treatment of depression by XYS.


Subject(s)
Animals , Mice , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Adiponectin/metabolism , Antidepressive Agents/pharmacology , China , Depression/drug therapy , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Glucose , Hypothalamus/metabolism , Receptors, Adiponectin/metabolism
11.
Journal of Integrative Medicine ; (12): 348-354, 2022.
Article in English | WPRIM | ID: wpr-939896

ABSTRACT

OBJECTIVE@#Salvadora persica (SP) is used as a food additive and is a common ingredient in folk medicine. This study investigates the antioxidant, anti-inflammatory, and beneficial effects of SP against cyclophosphamide (CYP) toxicity in rats.@*METHODS@#In a 10-day study, 32 male rats were equally allocated into 4 groups (8 rats/group) as follows: the normal control (NC group), normal rats that only received oral aqueous extract of SP (100 mg/[kg·d]; SP group), animals treated with intraperitoneal CYP injections (30 mg/[kg·d]; CYP group), and the CYP + SP group that concurrently received CYP with SP aqueous extract. Serum samples were collected to measure the liver and renal biochemical profiles, as well as antioxidant and oxidative stress markers and the concentrations of interleukin-1β (IL-1β), IL-6, IL-10, tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB) and adenosine 5'-monophosphate-activated protein kinase (AMPK). Hepatic and renal tissues were also harvested for histopathology and to measure apoptosis using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling technique, alongside tissue levels of oxidative stress markers.@*RESULTS@#Liver enzymes, total bilirubin, creatinine and urea, as well as serum IL-1β, IL-6, TNF-α and NF-κB increased significantly, whilst total protein, albumin, calcium, IL-10 and AMPK declined in serum of the CYP group relative to the NC group. The hepatorenal concentrations of glutathione, glutathione peroxidase and catalase declined markedly in the CYP group, whereas malondialdehyde, protein adducts, and apoptosis index increased compared with the NC group. By contrast, the hepatorenal biochemistry and apoptosis index of the SP group were comparable to the NC group. Interestingly, the CYP + SP group had significant improvements in the liver and renal biochemical parameters, enhanced anti-oxidative and anti-inflammatory effects, and marked declines in hepatic and renal apoptosis relative to the CYP group. Moreover, all monitored parameters were statistically indistinguishable between the CYP + SP group and the NC group.@*CONCLUSION@#This study suggests that the aqueous extract of SP could be a potential remedy against CYP-induced hepatorenal damage and may act by modulating the AMPK/NF-κB signaling pathway and promoting anti-oxidative and anti-inflammatory activities.


Subject(s)
Animals , Male , Rats , AMP-Activated Protein Kinases/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Apoptosis , Biomarkers , Cyclophosphamide , Inflammation/drug therapy , Interleukin-10 , Interleukin-6/metabolism , Liver , NF-kappa B/metabolism , Oxidative Stress , Salvadoraceae/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Journal of Integrative Medicine ; (12): 365-375, 2022.
Article in English | WPRIM | ID: wpr-939894

ABSTRACT

OBJECTIVE@#Qili Qiangxin (QLQX), a compound herbal medicine formula, is used effectively to treat congestive heart failure in China. However, the molecular mechanisms of the cardioprotective effect are still unclear. This study explores the cardioprotective effect and mechanism of QLQX using the hypoxia-reoxygenation (H/R)-induced myocardial injury model.@*METHODS@#The main chemical constituents of QLQX were analyzed using high-performance liquid chromatography-evaporative light-scattering detection. The model of H/R-induced myocardial injury in H9c2 cells was developed to simulate myocardial ischemia-reperfusion injury. Apoptosis, autophagy, and generation of reactive oxygen species (ROS) were measured to assess the protective effect of QLQX. Proteins related to autophagy, apoptosis and signalling pathways were detected using Western blotting.@*RESULTS@#Apoptosis, autophagy and the excessive production of ROS induced by H/R were significantly reduced after treating the H9c2 cells with QLQX. QLQX treatment at concentrations of 50 and 250 μg/mL caused significant reduction in the levels of LC3II and p62 degradation (P < 0.05), and also suppressed the AMPK/mTOR signalling pathway. Furthermore, the AMPK inhibitor Compound C (at 0.5 μmol/L), and QLQX (250 μg/mL) significantly inhibited H/R-induced autophagy and apoptosis (P < 0.01), while AICAR (an AMPK activator, at 0.5 mmol/L) increased cardiomyocyte apoptosis and autophagy and abolished the anti-apoptotic effect of QLQX. Similar phenomena were also observed on the expressions of apoptotic and autophagic proteins, demonstrating that QLQX reduced the apoptosis and autophagy in the H/R-induced injury model via inhibiting the AMPK/mTOR pathway. Moreover, ROS scavenger, N-Acetyl-L-cysteine (NAC, at 2.5 mmol/L), significantly reduced H/R-triggered cell apoptosis and autophagy (P < 0.01). Meanwhile, NAC treatment down-regulated the ratio of phosphorylation of AMPK/AMPK (P < 0.01), which showed a similar effect to QLQX.@*CONCLUSION@#QLQX plays a cardioprotective role by alleviating apoptotic and autophagic cell death through inhibition of the ROS/AMPK/mTOR signalling pathway.


Subject(s)
Humans , AMP-Activated Protein Kinases/metabolism , Apoptosis , Autophagic Cell Death , Autophagy , Drugs, Chinese Herbal , Herbal Medicine , Hypoxia/metabolism , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism
13.
Chinese journal of integrative medicine ; (12): 586-593, 2022.
Article in English | WPRIM | ID: wpr-939786

ABSTRACT

OBJECTIVE@#To investigate the therapeutic effect of Yixin Ningshen Tablet (YXNS) on comorbidity of myocardial infarction (MI) and depression in rats and explore the underlying mechanism.@*METHODS@#The Sprague-Dawley rats were randomly divided into 5 groups with 7 rats in each group according to their weights, including control, model, fluoxetine (FLXT, 10 mg/kg), low-dose YXNS (LYXNS, 100 mg/kg), and high-dose YXNS (HYXNS, 300 mg/kg) groups. All rats were pretreated with corresponding drugs for 12 weeks. The rat model of MI and depression was constructed by ligation of left anterior descending coronary artery and chronic mild stress stimulation. The echocardiography, sucrose preference test, open field test, and forced swim test were performed. Myocardial infarction (MI) area and myocardial apoptosis was also detected. Serum levels of interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), 5-hydroxytryptamine (5-HT), adrenocorticotrophic hormone (ACTH), corticosterone (CORT), and norepinephrine (NE) were determined by enzyme linked immunosorbent assay. The proteins of adenosine 5'-monophosphate -activated protein kinase (AMPK), p-AMPK, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and nuclear respiratory factor 1 (NRF1) in heart were detected by Western blot analysis. The expression levels of TNF-α, IL-6, indoleamine 2,3-dioxygenase (IDO1), kynurenine 3-monooxygenase (KMO), and kynureninase (KYNU) in hippocampus were detected by real-time quantitative polymerase chain reaction.@*RESULTS@#Compared with the model group, the cardiac function of rats treated with YXNS improved significantly (P<0.01). Meanwhile, YXNS effectively reduced MI size and cardiomyocytes apoptosis of rats (P<0.01 or P<0.05), promoted AMPK phosphorylation, and increased PGC-1α protein expression (P<0.01 or P<0.05). HYXNS significantly increased locomotor activity of rats, decreased the levels of TNF-α, IL-6 and IL-1β, and increased the serum levels of 5-HT, NE, ACTH, and CORT (all P<0.05). Moreover, HYXNS decreased the mRNA expressions of IDO1, KMO and KYNU (P<0.05).@*CONCLUSIONS@#YXNS can relieve MI by enhancing myocardial energy metabolism. Meanwhile, YXNS can alleviate depression by resisting inflammation and increasing availability of monoamine neurotransmitters. It may be used as a potential drug to treat comorbidity of MI and depression.


Subject(s)
Animals , Rats , AMP-Activated Protein Kinases/metabolism , Adrenocorticotropic Hormone , Comorbidity , Depression/drug therapy , Energy Metabolism , Interleukin-6/metabolism , Myocardial Infarction/pathology , Neurotransmitter Agents , Rats, Sprague-Dawley , Serotonin/metabolism , Tablets , Tumor Necrosis Factor-alpha/metabolism
14.
Journal of Southern Medical University ; (12): 518-527, 2022.
Article in Chinese | WPRIM | ID: wpr-936343

ABSTRACT

OBJECTIVE@#To explore the mechanism underlying the hepatoprotective effect of dihydromyricetin (DMY) against lipid accumulation in light of the lipophagy pathway and the inhibitory effect of DMY on HepG2 cell proliferation.@*METHODS@#LO2 cells were cultured in the presence of 10% FBS for 24 h and treated with 100 μg/mL DMY, or exposed to 50% FBS for 24 h followed by treatment with 50, 100, or 200 μg/mL DMY; the cells in recovery group were cultured in 50% FBS for 24 h and then in 10% FBS for another 24 h. Oil red O staining was used to observe the accumulation of lipid droplets in the cells, and the levels of TC, TG, and LDL and activities of AST, ALT and LDH were measured. The expression of LC3 protein was detected using Western blotting. AO staining and transmission electron microscopy were used to determine the numbers of autophagolysosomes and autophagosomes, respectively. The formation of autophagosomes was observed with MDC staining, and the mRNA expression levels of LC3, ATG7, AMPK, mTOR, p62 and Beclin1 were determined with q-PCR. Flow cytometry was performed to analyze the effect of 50, 100, and 200 μg/mL DMY on cell cycle and apoptosis of HepG2 cells; DNA integrity in the treated cells was examined with cell DNA fragmentation test.@*RESULTS@#DMY treatment and pretreatment obviously inhibited lipid accumulation and reduced the levels of TC, TG, LDL and enzyme activities of AST, ALT and LDH in LO2 cells (P < 0.05). In routinely cultured LO2 cells, DMY significantly promoted the formation of autophagosomes and autophagolysosomes and upregulated the expression of LC3 protein. DMY obviously attenuated high FBS-induced inhibition of autophagosome formation in LO2 cells, up- regulated the mRNA levels of LC3, ATG7, Beclin1 and AMPK, and downregulated p62 and mTOR mRNA levels (P < 0.05 or 0.01). In HepG2 cells, DMY caused obvious cell cycle arrest, inhibited cell proliferation, and induced late apoptosis and DNA fragmentation.@*CONCLUSION@#DMY reduces lipid accumulation in LO2 cells by regulating the AMPK/ mTOR-mediated lipophagy pathway and inhibits the proliferation of HepG2 by causing cell cycle arrest and promoting apoptosis.


Subject(s)
Humans , AMP-Activated Protein Kinases/metabolism , Autophagy , Beclin-1 , Cell Proliferation , Flavonols , Hep G2 Cells , Lipids , RNA, Messenger , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
15.
Journal of Central South University(Medical Sciences) ; (12): 165-173, 2022.
Article in English | WPRIM | ID: wpr-929019

ABSTRACT

OBJECTIVES@#Genetic mutation is one of the important causes for tumor genesis and development, but genetic mutation in nasopharyngeal carcinoma (NPC) has rarely been reported. This study explored the role of phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), mammalian target of rapamycin (mTOR), and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway in the efficacy and prognosis in patients with NPC.@*METHODS@#A total of 31 patients with advanced NPC, who came from the Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University/Hunan Provincial Cancer Hospital, were enrolled. All of the exons of 288 genes, introns of 38 genes and promoters or fusion breakpoint regions from the nasopharyngeal biopsy tissues before treatment were detected by the gene sequencing platform Illumina NextSeq CN500. The coding regions of 728 genes were carried out a high-depth sequencing of target region capture, and the 4 variant types of tumor genes (including point mutations, insertion deletions of small fragments, copy number variations, and currently known fusion genes) were detected. All of 31 patients received platinum-based induction chemotherapy combined with concurrent chemoradiotherapy and were followed up for a long time.@*RESULTS@#The 3-year regional failure-free survival (RFFS) and disease-free survival (DFS) in patients with PI3K-Akt pathway mutation were significantly lower than those in unmutated patients (χ2=6.647, P<0.05). The 3-year RFFS and DFS in patients with mTOR pathway mutations were significantly lower than those in unmutated patients, and there was significant difference (χ2=5.570, P<0.05). The rate of complete response (CR) in patients with unmutated AMPK pathway was significantly higher than that in patients with mutation at 3 months after treatment (P<0.05), and the 3-year RFFS and DFS in patients with AMPK pathway mutation were significantly lower than those in unmutated patients (χ2=4.553, P<0.05). PI3K-Akt/mTOR/AMPK signaling pathway mutations and pre-treatment EB virus DNA copy numbers were independent prognostic factors for 3-year RFFS and DFS in patients with NPC (both P<0.05).@*CONCLUSIONS@#The NPC patients with PI3K-Akt/mTOR/AMPK signaling pathway mutation have poor prognosis, and the detection of PI3K-Akt, mTOR, AMPK driver genes and signaling pathways by next-generation sequencing is expected to provide new idea for basic research and targeted therapy of NPC.


Subject(s)
Humans , AMP-Activated Protein Kinases/metabolism , DNA Copy Number Variations , Mutation , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sirolimus , TOR Serine-Threonine Kinases/metabolism
16.
Journal of Central South University(Medical Sciences) ; (12): 8-17, 2022.
Article in English | WPRIM | ID: wpr-929000

ABSTRACT

OBJECTIVES@#Acute kidney injury (AKI) can be caused by ischemia/reperfusion (I/R), nephrotoxin, and sepsis, with poor prognosis and high mortality. Leptin is a protein molecule that regulates the body's energy metabolism and reproductive activities via binding to its specific receptor. Leptin can inhibit cardiomyocyte apoptosis caused by I/R, but its effect on I/R kidney injury and the underlying mechanisms are still unclear. This study aims to investigate the effect and mechanisms of leptin on renal function, renal histopathology, apoptosis, and autophagy during acute I/R kidney injury.@*METHODS@#Healthy adult male mice were randomly divided into 4 groups: a sham+wild-type mice (ob/+) group, a sham+leptin gene-deficient mice (ob/ob) group, an I/R+ob/+ group, and an I/R+ob/ob group (n=8 per group). For sham operation, a longitudinal incision was made on the back of the mice to expose and separate the bilateral kidneys and renal arteries, and no subsequent treatment was performed. I/R treatment was ischemia for 30 min and reperfusion for 48 h. The levels of BUN and SCr were detected to evaluate renal function; HE staining was used to observe the pathological changes of renal tissue; TUNEL staining was used to observe cell apoptosis, and apoptosis-positive cells were counted; Western blotting was used to detect levels of apoptosis-related proteins (caspase 3, caspase 9), autophagy-related proteins [mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), LC3 I, LC3 II], mTOR-dependent signaling pathway proteins [phosphate and tension homology (PTEN), adenosine monophosphate-activated protein kinase (AMPK), protein kinase B (AKT), extracellular regulated protein kinase (ERK), phosphorylated PTEN (p-PTEN), phosphorylated AMPK (p-AMPK), phosphorylated AKT (p-AKT), phosphorylated ERK (p-ERK)].@*RESULTS@#There was no significant difference in the levels of BUN and SCr between the sham+ob/+ group and the sham+ob/ob group (both P>0.05). The levels of BUN and SCr in the I/R+ob/+ group were significantly higher than those in the sham+ob/+ group (both P<0.05). Compared with the mice in the sham+ob/ob group or the I/R+ob/+ group, the levels of BUN and SCr in the I/R+ob/ob group were significantly increased (all P<0.05). There was no obvious damage to the renal tubules in the sham+ob/+ group and the sham+ob/ob group. Compared with sham+ob/+ group and sham+ob/ob group, both the I/R+ob/+ group and the I/R+ob/ob group had cell damage such as brush border shedding, vacuolar degeneration, and cast formation. Compared with the I/R+ob/+ group, the renal tubules of the mice in the I/R+ob/ob group were more severely damaged. The pathological score of renal tubular injury showed that the renal tubular injury was the most serious in the I/R+ob/ob group (P<0.05). Compared with the sham+ob/+ group, the protein levels of caspase 3, caspase 9, PTEN, and LC3 II were significantly up-regulated, the ratio of LC3 II to LC3 I was significantly increased, and the protein levels of p-mTOR, p-PTEN, p-AMPK, p-AKT, and p-ERK were significantly down-regulated in the I/R+ob/+ group (all P<0.05). Compared with the sham+ob/ob group, the protein levels of caspase 3, caspase 9, PTEN, and LC3 II were significantly up-regulated, and the ratio of LC3 II to LC3 I was significantly increased, while the protein levels of p-mTOR, p-PTEN, p-AMPK, p-AKT, and p-ERK were significantly down-regulated in the I/R+ob/ob group (all P<0.05). Compared with the I/R+ob/+ group, the levels of p-mTOR, p-PTEN, p-AMPK, p-AKT were more significantly down-regulated, while the levels of caspase 3, caspase 9, PTEN, and LC3 II were more significantly up-regulated, and the ratio of LC3 II to LC3 I was more significantly increase in the I/R+ob/ob group (all P<0.05).@*CONCLUSIONS@#Renal function and tubular damage, and elevated levels of apoptosis and autophagy are observed in mice kidneys after acute I/R. Leptin might relieve I/R induced AKI by inhibiting apoptosis and autophagy that through a complex network of interactions between mTOR-dependent signaling pathways.


Subject(s)
Animals , Female , Humans , Male , Mice , AMP-Activated Protein Kinases/metabolism , Acute Kidney Injury/pathology , Apoptosis , Apoptosis Regulatory Proteins/pharmacology , Autophagy , Caspase 3/metabolism , Caspase 9/metabolism , Ischemia , Kidney/pathology , Leptin/pharmacology , Mammals/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reperfusion/adverse effects , Reperfusion Injury/metabolism , TOR Serine-Threonine Kinases/metabolism
17.
Chinese journal of integrative medicine ; (12): 52-59, 2022.
Article in English | WPRIM | ID: wpr-928928

ABSTRACT

OBJECTIVE@#To investigate the protective effects of modified Linggui Zhugan Decoction (, MLZD), a traditional Chinese medicine formula, on obese type 2 diabetes mellitus (T2DM) rats.@*METHODS@#Fifty Sprague-Dawley rats were randomly divided into 5 groups by a random number table, including normal, obese T2DM (ob-T2DM), MLZD low-dose [MLDZ-L, 4.625 g/(kg·d)], MLZD middle-dose [MLD-M, 9.25 g/(kg·d) ] and MLZD high-dose [MLD-H, 18.5 g/(kg·d)] groups, 10 rats in each group. After 4-week intervention, blood samples and liver, pancreas, muscle tissues were collected to assess the insulin resistance (IR), blood lipid, adipokines and inflammation cytokines. The alteration of phosphatidylinositol 3 kinase (PI3K)-protein kinase B (PKB or Akt)/the mammalian target of rapamycin (mTOR)-ribosome protein subunit 6 kinase 1 (S6K1 )/AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 α) pathways were also studied.@*RESULTS@#MLZD dose-dependently reduced fasting blood glucose, fasting insulin, homeostasis model of assessment for IR index and increased insulin sensitive index compared with ob-T2DM rats (P<0.05). Similarly, total cholesterol, triglyceride, low-density lipoprotein cholesterol and free fatty acids were also decreased compared with ob-T2DM rats after 4-week treatment (P<0.05 or P<0.01). Improvements in adipokines and inflammatory cytokines were observed with a raised level of adiponectin and a reduced level of leptin, resistin, tumor necrosis factor-α and interleukin-6 (P<0.05 or P<0.01). MLZD regulated the PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α pathways and restored the tissue structure of liver and pancreas (P<0.05 or P<0.01).@*CONCLUSIONS@#MLZD ameliorated glycolipid metabolism and inflammation, which may be attributed to the regulation of PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α pathways.


Subject(s)
Animals , Rats , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2/drug therapy , Glycolipids , Inflammation , Obesity/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
18.
China Journal of Chinese Materia Medica ; (24): 453-460, 2022.
Article in Chinese | WPRIM | ID: wpr-927989

ABSTRACT

The present study investigated the pharmaceutical effect and underlying mechanism of Zexie Decoction(ZXD) on nonalcoholic fatty liver disease(NAFLD) in vitro and in vivo via the LKB1/AMPK/PGC-1α pathway based on palmitic acid(PA)-induced lipid accumulation model and high-fat diet(HFD)-induced NAFLD model in mice. As revealed by the MTT assay, ZXD had no effect on HepG2 activity, but dose-dependently down-regulated alanine aminotransferase(ALT) and aspartate aminotransferase(AST) in the liver cell medium induced by PA, and decreased the plasma levels of ALT and AST, and total cholesterol(TC) and triglyceride(TG) levels in the liver. Nile red staining showed PA-induced intracellular lipid accumulation, significantly increased lipid accumulation of hepatocytes induced by PA, suggesting that the lipid accumulation model in vitro was properly induced. ZXD could effectively improve the lipid accumulation of hepatocytes induced by PA. Oil red O staining also demonstrated that ZXD improved the lipid accumulation in the liver of HFD mice. JC-1 staining for mitochondrial membrane potential indicated that ZXD effectively reversed the decrease in mitochondrial membrane potential caused by hepatocyte injury induced by PA, activated PGC-1α, and up-regulated the expression of its target genes, such as ACADS, CPT-1α, CPT-1β, UCP-1, ACSL-1, and NRF-1. In addition, as revealed by the Western blot and immunohistochemistry, ZXD up-regulated the protein expression levels of LKB1, p-AMPK, p-ACC, and PGC-1α in vivo and in vitro. In conclusion, ZXD can improve NAFLD and its mechanism may be related to the regulation of the LKB1/AMPK/PGC-1α pathway.


Subject(s)
Animals , Mice , AMP-Activated Protein Kinases/metabolism , Alanine Transaminase/metabolism , Diet, High-Fat , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
19.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 161-176, 2022.
Article in English | WPRIM | ID: wpr-929248

ABSTRACT

Simiao Wan (SMW) is a traditional Chinese formula, including Atractylodis Rhizoma, Achyranthis Bidentatae Radix, Phellodendri Chinensis Cortex and Coicis Semen at the ratio of 1:1:2:2. It can be used to the treatment of diabetes. However, its bioactive compounds and underlying mechanism are unclear. This study aimed to screen the antilipolytic fraction from SMW and investigate its therapeutic mechanisms on hepatic insulin resistance. Different fractions of SMW were prepared by membrane separation combined with macroporous resin and their antilipolytic activities were screened in fasted mice. The effects of 60% ethanol elution (ESMW) on lipolysis were investigated in 3T3-L1 adipocytes stimulated by palmitic acid (PA) and high fat diet (HFD)-fed mice. In our study, ESMW is the bioactive fraction responsible for the antilipolytic activity of SMW and 13 compounds were characterized from ESMW by UHPLC-QTOF-MS/MS. ESMW suppressed protein kinase A (PKA)-hormone-sensitive lipase (HSL) related lipolysis and increased AMP-activated protein kinase (AMPK) phosphorylation in PA challenged 3T3-L1 adipocytes. AMPKα knockdown abolished the inhibitory effects of ESMW on IL-6 and HSL pSer-660, revealing that the antilipolytic and anti-inflammatory activities of ESMW are AMPK dependent. Furthermore, ESMW ameliorated insulin resistance and suppressed lipolysis in HFD-fed mice. It inhibited diacylglycerol accumulation in the liver and inhibited hepatic gluconeogenesis. Conditional medium collected from ESMW-treated 3T3-L1 cells ameliorated insulin action on hepatic gluconeogenesis in liver cells, demonstrating the antilipolytic activity contributed to ESMW beneficial effects on hepatic glucose production. In conclusion, ESMW, as the antilipolytic fraction of SMW, inhibited PKA-HSL related lipolysis by activating AMPK, thus inhibiting diacylglycerol (DAG) accumulation in the liver and thereby improving insulin resistance and hepatic gluconeogenesis.


Subject(s)
Animals , Mice , AMP-Activated Protein Kinases/metabolism , Insulin/metabolism , Lipolysis/physiology , Liver/metabolism , Tandem Mass Spectrometry
20.
Biol. Res ; 54: 3-3, 2021. graf, ilus
Article in English | LILACS | ID: biblio-1505792

ABSTRACT

BACKGROUND: Testosterone regulates nutrient and energy balance to maintain protein synthesis and metabolism in cardiomyocytes, but supraphysiological concentrations induce cardiac hypertrophy. Previously, we determined that testosterone increased glucose uptake­via AMP-activated protein kinase (AMPK)­after acute treatment in cardiomyocytes. However, whether elevated glucose uptake is involved in long-term changes of glucose metabolism or is required during cardiomyocyte growth remained unknown. In this study, we hypothesized that glucose uptake and glycolysis increase in testosterone-treated cardiomyocytes through AMPK and androgen receptor (AR). METHODS: Cultured cardiomyocytes were stimulated with 100 nM testosterone for 24 h, and hypertrophy was verified by increased cell size and mRNA levels of ß-myosin heavy chain (ß-mhc). Glucose uptake was assessed by 2-NBDG. Glycolysis and glycolytic capacity were determined by measuring extracellular acidification rate (ECAR). RESULTS: Testosterone induced cardiomyocyte hypertrophy that was accompanied by increased glucose uptake, glycolysis enhancement and upregulated mRNA expression of hexokinase 2. In addition, testosterone increased AMPK phosphorylation (Thr172), while inhibition of both AMPK and AR blocked glycolysis and cardiomyocyte hypertrophy induced by testosterone. Moreover, testosterone supplementation in adult male rats by 5 weeks induced cardiac hypertrophy and upregulated ß-mhc, Hk2 and Pfk2 mRNA levels. CONCLUSION: These results indicate that testosterone stimulates glucose metabolism by activation of AMPK and AR signaling which are critical to induce cardiomyocyte hypertrophy.


Subject(s)
Animals , Male , Rats , Testosterone/pharmacology , Receptors, Androgen/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Signal Transduction , Cells, Cultured , Hypertrophy , Myocardium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL